STONE TFT LCD Module STM32 Service Robot Motion Status Monitoring
As a kind of semi-autonomous or fully self-help robot, service robots are able to perform useful service work for human beings, such as carrying, cleaning, and rescue. As service robots gradually enter the social life of people, they are now widely used in public places such as exhibition halls, restaurants, and hotels, which have a profound impact on improving the quality of human life and the service industry.
Usually, service robots are equipped with high-precision LIDAR, voice acquisition module, motion module, display screen, wireless connection module, and other major equipment. The robot uses LIDAR to build a high-precision indoor map, a voice module to receive voice commands, a motion module to move the robot to the target location, and a wireless module to receive remote commands from the controller to achieve remote intelligent control. Industrial touch screen
Here we take a single-story scenario of a high-end office building as an example. The robot needs to serve the office workers in the building at regular intervals, and the task requires the robot to sense the environment and its own motion state through intrinsic or extrinsic sensors and perform collision-free motion from the robot’s current location to the target location according to the principles of optimal time, shortest path, or lowest energy consumption.
Fundamentals Of Service Robot
As a kind of semi-autonomous or fully self-help robot, service robots are able to perform useful service work for human beings, such as carrying, cleaning, and rescue. As service robots gradually enter the social life of people, they are now widely used in public places such as exhibition halls, restaurants, and hotels, which have a profound impact on improving the quality of human life and the service industry. lcd display 7 inch
Usually, service robots are equipped with high-precision LIDAR, voice acquisition module, motion module, display screen, wireless connection module, and other major equipment. The robot uses LIDAR to build a high-precision indoor map, a voice module to receive voice commands, a motion module to move the robot to the target location, and a wireless module to receive remote commands from the controller to achieve remote intelligent control.